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> Polar Codes » lteratively improve the channel reliability and decoding performance

» Capacity-achieving for codes of infinite length » Resemble a cooperative learning system

» Low-complexity encoding and decoding » The Neural BP Decoder is firstly trained

> Selected for 5G eMBB control channel [1] » The Channel Equalizer is then trained to minimize decoding errors
» Deep Learning aided Approaches for Decoding Linear Codes ¥ | Neural BP | 7,H”

» One-hot decoding algorithm y _'®__"‘ Decoding > A

» Reduce decoding latency of conventional decoders Channel >y

» Preserve the symmetric conditions of the codes under specific settings Y| Equalizer

» Gradient-based optimization algorithm for conventional decoders " Abs "

Polar Codes |2 Figure: The Proposed Decoding Algorithm with Joint Neural BP Decoder and Channel Equalizer

» P(N, K): polar code of length N and rate %

» K best reliable bits to transmit information bits Configurations

> Belief Propagation (BP) Decoding: » Polar codes: P(64, 32), used in 5G.

» Reasonable error-correction performance with enough number of iterations /
P 5 » Neural BP Decoder

> Latency: Tgp = 2/ logy N (time steps) > Training at SNR € {3,3.5,4,4.5,5,5.5,6} dB
» High throughput » Obtain 10° random codewords at each SNR value
» Epochs: 50, batch size: 350, iterations: 5, optimizer: RMSPROP
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C) P lé'”lz}_)It'S » Model: 4-layered LSTMs with 5 time steps, 2 fully connected layers
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Figure: BP decoding for P(8, 5) (b) A left-to-right PE Experlmental Results
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» Assign trainable weights to the inputs of the PEs and train them using backprop - |
» Mitigate the detrimental effects of the code’s short cycles o |
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» Improve the convergence speed of the decoding process k= |
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Figure: A Neural BP Decoding Architecture for P (8, 5)

Conclusion

» Gain 0.2 dB at FER = 107> compared to the state-of-the-art neural BP

» Model the Additive White Gaussian Noise as multiplicative noise decoder [3]
» Reduce the learning problem from regression to classification > Gain more than 1 dB compared to the conventional BP decoder

Syndrome-Based Decoding Algorithm [4

» Require a considerably large LSTM-based model for the noise estimator
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