A Polar Code Decoding Algorithm with Joint Neural Belief Propagation Decoder and Channel Equalizer McGill

Nghia Doan, Elie Ngomseu Mambou nghia.doan@mail.mcgill.ca, elie.ngomseumambou@mail.mcgill.ca McGill University

Abstract

- Polar Codes
 - Capacity-achieving for codes of infinite length
 - Low-complexity encoding and decoding
 - Selected for 5G eMBB control channel [1]
- Deep Learning aided Approaches for Decoding Linear Codes
 - **One-hot** decoding algorithm
 - Reduce decoding latency of conventional decoders

Joint Neural BP Decoder and Channel Equalizer

- Iteratively improve the channel reliability and decoding performance
- Resemble a cooperative learning system
- The Neural BP Decoder is firstly trained
- The Channel Equalizer is then trained to minimize decoding errors

- Preserve the symmetric conditions of the codes under specific settings
- Gradient-based optimization algorithm for conventional decoders

Polar Codes [2]

- $\triangleright \mathcal{P}(N,K)$: polar code of length N and rate $\frac{K}{N}$
- ► K best reliable bits to transmit information bits
- Belief Propagation (BP) Decoding:
 - Reasonable error-correction performance with enough number of iterations I
 - ► Latency: $\mathcal{T}_{BP} = 2I \log_2 N$ (time steps)
 - High throughput

Figure: The Proposed Decoding Algorithm with Joint Neural BP Decoder and Channel Equalizer

Configurations

- \blacktriangleright Polar codes: $\mathcal{P}(64, 32)$, used in 5G.
- ► Neural BP Decoder
 - Training at $SNR \in \{3, 3.5, 4, 4.5, 5, 5.5, 6\}$ dB
 - \blacktriangleright Obtain **10⁵** random codewords at each SNR value
 - Epochs: 50, batch size: 350, iterations: 5, optimizer: RMSPROP
- Channel Equalizer
 - ► Model: 4-layered LSTMs with 5 time steps, 2 fully connected layers
 - Training at $SNR \in \{3, 3.5, 4, 4.5, 5, 5.5, 6\}$ dB
 - Obtain 10^5 random codewords at each SNR value
 - Epochs: 50, batch size: 350, optimizer: RMSPROP
- Deep Learning Framework: Tensorflow
- ► Testing
 - Simulate at least 10^5 random codewords
 - Minimum number of frames in errors: 50

Figure: BP decoding for $\mathcal{P}(8, 5)$

(b) A left-to-right PE

Neural BP Decoding Algorithm [3]

- Assign trainable weights to the inputs of the PEs and train them using backprop
- Mitigate the detrimental effects of the code's short cycles
- Improve the convergence speed of the decoding process

Syndrome-Based Decoding Algorithm [4]

Experimental Results

Figure: Frame Error Rate (FER) Performance of Various Decoders for $\mathcal{P}(64, 32)$.

Conclusion

- ► Gain 0.2 dB at $FER = 10^{-5}$ compared to the state-of-the-art neural BP decoder [3]
- Model the Additive White Gaussian Noise as multiplicative noise
- Reduce the learning problem from regression to classification

Input

Figure: A Neural Syndrome-based Decoding Architecture for Linear Block Codes

- ► Gain more than 1 dB compared to the conventional BP decoder
- Require a considerably large LSTM-based model for the noise estimator

Reference

LSTM

LSTM

LSTM

- [1] 3GPP, "Multiplexing and channel coding (Release 10) 3GPP TS 21.101 v10.4.0." Oct. 2018. [Online]. Available: http://www.3gpp.org/ftp/Specs/2018-09/Rel-10/21_series/21101-a40.zip
- [2] E. Arıkan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.
- [3] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. Be'ery, "Deep learning methods for improved decoding of linear codes," IEEE J. of Sel. Topics in Signal Process., vol. 12, no. 1, pp. 119–131, February 2018.
- [4] A. Bennatan, Y. Choukroun, and P. Kisilev, "Deep learning for decoding of linear codes-a syndrome-based approach," arXiv preprint arXiv:1802.04741, 2018.
- [5] L. Lugosch and W. J. Gross, "Neural offset min-sum decoding," in IEEE Int Symp. on Inf. Theory, August 2017, pp. 1361–1365.
- [6] W. Xu, Z. Wu, Y.-L. Ueng, X. You, and C. Zhang, "Improved polar decoder based on deep learning," in IEEE Int. Workshop on Signal Process. Syst., November 2017, pp. 1–6.