Balancing with Gray code Prefix 0000000 Redundancy and Complexit

Conclusion

Encoding and Decoding of Balanced *q*-ary Sequences Using a Gray Code Prefix

Elie N. Mambou & Theo G. Swart

Department of Electrical and Electronic Engineering Science, University of Johannesburg (UJ) South Africa

2016 IEEE International Symposium on Information Theory Universitat Pompeu Fabra Campus Ciutadella, Barcelona, Spain

July 10-15, 2016

CENTER FOR TELECOMMUNICATIONS

Mambou & Swart (UJ)

ISIT 2016 1 / 19

Overview 00	Background 00000	Balancing with Gray code Prefix	Redundancy and Complexity	Conclusion

Overview

- 2 Balancing with Gray code Prefix
- Redundancy and Complexity

Overview	Backgro
	00000

Balancing with Gray code Prefix

Redundancy and Complexity

Conclusion

Definition of balanced codeword

und

- Consider a q-ary information sequence $\mathbf{x} = x_0 x_1 x_2 \dots x_{k-1}$, $x_i \in \{0, 1, \dots, q-1\}$, of length k.
- Let the prefix that will be appended to **x** be of length r; and let the information and the prefix together be denoted by $\mathbf{c} = c_0 c_1 c_2 \dots c_{k-1}$, $c_i \in \{0, 1, \dots, q-1\}$, of length n = k + r.
- If $w(\mathbf{c})$ represents the weight of \mathbf{c} then

$$w(\mathbf{c}) = \sum_{i=0}^{k-1} c_i.$$

• c is said to be balanced if

$$w(\mathbf{c}) = \frac{n(q-1)}{2} = \beta$$
, where β is an integer.

Overview 00	Background ○●○○○	Balancing with Gray code Prefix	Redundancy and Complexity	Conclusion 00

Balancing of *q*-ary sequences

It has been proven [1], that x, can always be balanced by adding modulo q one sequence from a set of balancing sequences
 b(s, p) = b₁b₂...b_k generated as follows:

$$b_i = egin{cases} s, & i-1 \geq p, \ s+1 \pmod{q}, & i-1 < p, \end{cases}$$
 where $egin{cases} 0 \leq s \leq q-1, \ 0 \leq p \leq k-1. \end{bmatrix}$

- Let z be the iterator through these balancing sequences, with z = sk + p, $0 \le z \le kq 1$. $\mathbf{b}(s, p)$ and $\mathbf{b}(z)$ refers to the same.
- Let y denote the sequence after a balancing sequence is added,
 y = x ⊕_q b(z). At least one b(z) will lead to a balanced output y.

¹T. G. Swart and J. H. Weber, "Efficient balancing of *q*-ary sequences with parallel decoding," in *Proc. IEEE Int. Symp. Inform. Theory*, Seoul, Korea, 2009.

Balancing with Gray code Prefix 0000000 Redundancy and Complexity

Conclusion

Balancing of *q*-ary sequences (Cont'd)

Example (1)

For q = 3, k = 3, consider the sequence 202. The balancing value is $\beta = 3$.

Ζ	$\mathbf{b}(z)$	$\mathbf{x}\oplus_q \mathbf{b}(z)=\mathbf{y}$	$w(\mathbf{y})$	Balanced?
0	000	$202 \oplus_3 000 = 202$	4	
1	100	$202 \oplus_3 100 = 002$	2	
2	110	$202 \oplus_3 110 = 012$	3	\checkmark
3	111	$202 \oplus_3 111 = 010$	1	
4	211	$202 \oplus_3 211 = 110$	2	
5	221	$202 \oplus_3 221 = 120$	3	\checkmark
6	222	$202 \oplus_3 222 = 121$	4	
7	022	$202 \oplus_3 022 = 221$	5	
8	002	$202 \oplus_3 002 = 201$	3	\checkmark

Overview 00	Background ○○○●○	Balancing with Gray code Prefix	Redundancy and Complexity	Conclusion

q-ary Gray Codes

- Invented by Frank Gray [2]; originally used to solve problems in pulse code communication; and extended to several other fields.
- $\mathbf{d} = d_1 d_2 \dots d_{r'}$ denotes a sequence amongst the set of q-ary sequences of length r' listed in lexicographic order. They are mapped to Gray code sequences, $\mathbf{g} = g_1 g_2 \dots g_{r'}$. Any two adjacent sequences differ in only one symbol position, with weight difference of either -1 or +1.

Ζ	d	g	z	d	g	z	d	g	Z	d	g
0	00	00	4	10	13	8	20	20	12	30	33
1	01	01	5	11	12	9	21	21	13	31	32
2	02	02	6	12	11	10	22	22	14	32	31
3	03	03	7	13	10	11	23	23	15	33	30

• 4-ary Gray code of length 2

²F. Gray, "Pulse code communication," U. S. Patent 2632058, 1953.

Mambou & Swart (UJ)

Encoding and Decoding of *q*-ary Gray codes [3]

Gray code encoding algorithm The parity of the sum S_i of the first i-1 digits of **g** determines the Gray code symbols, where $2 \le i \le r'$ and $g_1 = d_1$, then

$$S_i = \sum_{j=1}^{i-1} g_j, \quad ext{and} \quad g_i = egin{cases} d_i, & ext{if } S_i ext{ is even}, \ q-1-d_i, & ext{if } S_i ext{ is odd}. \end{cases}$$

Gray code decoding algorithm

$$S_i = \sum_{j=1}^{i-1} g_j, \quad ext{and} \quad d_i = egin{cases} g_i, & ext{if } S_i ext{ is even}, \ q-1-g_i, & ext{if } S_i ext{ is odd}. \end{cases}$$

³D.-J. Guan, "Generalized Gray codes with applications," in *Proc. National Science Council, Republic of China, Part A*, 1998.

Overview	Background	Balancing with Gray code Prefix	Redundancy and Complexity	Conclusion
00	00000	●000000		00

Problem Statement

- The prefix plays an important role as it helps to decode the source information at the receiver end.
- Various previous schemes for balancing sequences were based on the assumption that a prefix can be sent [4]; without actually implementing the prefix.
- We propose an efficient, fast and easy algorithm to encode and decode balanced sequences with prefixes based on Gray codes.

⁴T. G. Swart and J. H. Weber, "Efficient balancing of *q*-ary sequences with parallel decoding," in *Proc. IEEE Int. Symp. Inform. Theory*, Seoul, Korea, 2009.

Overview	Background	Balancing with Gray code Prefix	Redundancy and Complexity	Conclusion
		000000		

Encoding

Example (2)

For q = 3, k = 3, consider the sequence 201; the condition $k = q^t$ with $t \in N$ must hold. Length of Gray code $r' = \log_q k + 1 = 2$ so n = 5. Graph goes through β .

Ζ	$x \oplus_q b(z) = y$	$\mathbf{c}' = [\mathbf{g} \mathbf{y}]$	$w(\mathbf{c}')$ ⁷
0	$201 \oplus_3 000 = 201$	<u>00</u> 201	3 6 / / /
1	$201 \oplus_3 100 = 001$	<u>01</u> 001	2 5
2	$201 \oplus_3 110 = 011$	<u>02</u> 011	$4_{w(c')}^{4}$
3	$201 \oplus_3 111 = 012$	<u>12</u> 012	6 ^{w(c)} ³
4	$201 \oplus_3 211 = 112$	<u>11</u> 112	6 ²
5	$201 \oplus_3 221 = 122$	<u>10</u> 122	6 ¹
6	$201 \oplus_3 222 = 120$	<u>20</u> 120	5
7	$201 \oplus_3 022 = 220$	<u>21</u> 220	7 0 1 2 3 4 5 6 7 8
8	$201 \oplus_3 002 = 200$	<u>22</u> 200	ő ~ ~ ~

Overv	

Balancing with Gray code Prefix

Redundancy and Complexity

Encoding (Cont'd)

Example (3)

For q = 3, k = 3, consider the sequence 220; Graph does not go through β . Therefore we need to refine the algorithm.

Ζ	$\mathbf{x}\oplus_q \mathbf{b}(z)=\mathbf{y}$	$\mathbf{c}' = [\mathbf{g} \mathbf{y}]$	$w(\mathbf{c}')$	¹⁰ [7
0	$220 \oplus_3 000 = 220$	<u>00</u> 220	4	9 - /-
1	$220 \oplus_3 100 = 020$	<u>01</u> 020	3	
2	$220 \oplus_3 110 = 000$	<u>02</u> 000	2	
3	$220 \oplus_3 111 = 001$	<u>12</u> 001	4 w(c')	
4	$220 \oplus_3 211 = 101$	<u>11</u> 101	4	4
5	$220 \oplus_3 221 = 111$	<u>10</u> 111	4	3
6	$220 \oplus_3 222 = 112$	<u>20</u> 112	6	
7	$220 \oplus_3 022 = 212$	<u>21</u> 212	8	1
8	$220 \oplus_3 002 = 222$	<u>22</u> 222	10	
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Overview	
00	

Balancing with Gray code Prefix

Redundancy and Complexity

Conclusion

Encoding (Cont'd)

Example (Encoding)

For q = 3, k = 3, consider the sequence 212; Extra digit $u \in [0, q - 1]$ and $u = \beta - w(\mathbf{c}')$.

Ζ	$x \oplus_q b(z) = y$	$\mathbf{c} = [u \mathbf{g} \mathbf{y}]$	$w(\mathbf{c})$	
0	$212 \oplus_3 000 = 212$	<u>100</u> 212	6	
1	$212 \oplus_3 100 = 012$	<u>201</u> 012	6	8 7
2	$212 \oplus_3 110 = 022$	<u>002</u> 022	6	_ F / 1
3	$212 \oplus_3 111 = 020$	<u>112</u> 020	6 🕤	
4	$212 \oplus_3 211 = 120$	<u>111</u> 120	6 [•]	
5	$212 \oplus_3 221 = 100$	<u>010</u> 100	2	4
6	$212 \oplus_3 222 = 101$	<u>220</u> 101	6	
7	$212 \oplus_3 022 = 201$	<u>021</u> 201	6	
8	$212 \oplus_3 002 = 211$	<u>022</u> 211	8	0
				0 2 4 6 8
				z

Encoding (Cont'd)

Encoding algorithm: Balance the sequence by finding the correct Gray code prefix:

- Incrementing through z, determine the balancing sequence $\mathbf{b}(s, p)$ and add it to the information sequence x to obtain y.
- For each increment, convert z into base q over r' symbols and determine the corresponding Gray code sequence, g.
- Set $u = \beta w(\mathbf{c}')$, provided that $u \in \{0, 1, \dots, q-1\}$, otherwise set u = 0.
- Continue incrementing z until the weight of u, g and y together is equal to β .

Overview	Background	Balancing with Gray code Prefix	Redundancy and Complexity	Conclusion
00	00000	○○○○○●○		00
Decodi	ng			

The figure below shows the decoding process.

Overvie	

Balancing with Gray code Prefix ○○○○○○● Redundancy and Complexity

Decoding

Example (Decoding)

Consider the case q = 3, n = 13, where a sequence was encoded as 1012000122022, with a (3,3)-Gray code.

- The first symbol 1 is dropped, then the Gray code sequence is extracted as 012, and decoded as 010.
- Thus z = 3, leading to s = 0 and p = 3, and $\mathbf{b}(0,3) = 111000000$.
- Finally, the information sequence is recovered as $\mathbf{x} = \mathbf{y} \ominus_q \mathbf{b}(s, p) = 000122022 \ominus_3 111000000 = 222122022.$

Overview	Background	Balancing with Gray code Prefix	Redundancy and Complexity	Conclusion
00	00000		●○○	00
Redun	dancy			

The information sequence length k as a function of r for different constructions.

- (1) $k \le q^{r-1} \sqrt{\frac{6}{\pi r(q^2-1)}}$ [9] • (2) $k \le \frac{q^r-1}{r-1}$ [10] • (3) $k \le 2\frac{q^r-1}{r-1} - r$ [10] • (4) $k = q^{r-1} - r$ [11]
- (5) $k = q^{r-2}$ (This is our construction.)

¹¹L. G. Tallini and U. Vaccaro, "Efficient *m*-ary immutable codes," *Discrete Applied Mathematics*, 1999.

Mambou & Swart (UJ)

⁹T. G. Swart and J. H. Weber, "Efficient balancing of *q*-ary sequences with parallel decoding," in *Proc. IEEE Int. Symp. Inform. Theory*, Seoul, Korea, 2009.

¹⁰R. M. Capocelli, L. Gargano and U. Vaccaro, "Efficient *q*-ary immutable codes," *Discrete Applied Mathematics*, 1991.

Overview	Background	Balancing with Gray code Prefix	Redundancy and Complexity	Conclusion
00	00000		○●○	00

Redundancy

Overview 00	Background 00000	Balancing with Gray code Prefix	Redundancy and Complexity ○○●	Conclusion

Complexity

- Previous schemes discussed in [12] and [13] require O(qk log_q k) digit operations for the encoding and decoding processes.
- The scheme in [14] requires O(qk log_q k) digit operations for the encoding and O(k) digit operations for the decoding.
- Our decoding process requires $O(k + \log_q k)$ digit operations. Fast parallel decoding, after $\mathbf{b}(s, p)$ has been determined from the Gray code.
- Encoding takes longer than decoding. In the worst case where the kq-th balancing sequence and Gray code result in balancing, $\mathcal{O}(qk \log_a k)$ digit operations are needed.

 12 R. M. Capocelli, L. Gargano and U. Vaccaro, "Efficient *q*-ary immutable codes," *Discrete Applied Mathematics*, vol. 33, 1991.

¹³L. G. Tallini and U. Vaccaro, "Efficient *m*-ary immutable codes," *Discrete Applied Mathematics*, 1999.

¹⁴T. G. Swart and J. H. Weber, "Efficient balancing of *q*-ary sequences with parallel decoding," in *Proc. IEEE Int. Symp. Inform. Theory*, Seoul, Korea, 2009.

Mambou & Swart (UJ)

Overview 00	Background 00000	Balancing with Gray code Prefix	Redundancy and Complexity	Conclusion ●0
Conclu	sion			

- A simple algorithm was presented to encode and decode balanced q-ary information sequences of length k, where k = q^t. This is based on a Gray code prefix that encodes the balancing index.
- Both the balancing and Gray code algorithms are efficient as only simple addition and subtraction operations are used, and no lookup tables are needed.
- The majority of the decoding algorithm can also be performed in parallel.
- As future work, this algorithm will be extended to *q*-ary sequences of length *k*, where *k* ≠ *q^t*.
- An investigation into whether the extra symbol *u* can be eliminated for certain values of *k* and *q* has to be explored.

Overview 00	Background 00000	Balancing with Gray code Prefix	Redundancy and Complexity	Conclusion ○●
T I I	c			

Thanks for your attention!

"We cannot solve our problems with the same thinking we used when we created them." Albert Einstein

QUESTIONS AND COMMENTS

