Encoding and Decoding of Balanced q-ary Sequences Using a Gray Code Prefix

Elie N. Mambou \& Theo G. Swart

Department of Electrical and Electronic Engineering Science,
University of Johannesburg (UJ)
South Africa
2016 IEEE International Symposium on Information Theory Universitat Pompeu Fabra Campus Ciutadella, Barcelona, Spain

$$
\text { July 10-15, } 2016
$$

Overview

(1) Background
(2) Balancing with Gray code Prefix
(3) Redundancy and Complexity

4 Conclusion

Definition of balanced codeword

- Consider a q-ary information sequence $\mathbf{x}=x_{0} x_{1} x_{2} \ldots x_{k-1}$, $x_{i} \in\{0,1, \ldots, q-1\}$, of length k.
- Let the prefix that will be appended to \mathbf{x} be of length r; and let the information and the prefix together be denoted by $\mathbf{c}=c_{0} c_{1} c_{2} \ldots c_{k-1}$, $c_{i} \in\{0,1, \ldots, q-1\}$, of length $n=k+r$.
- If $w(\mathbf{c})$ represents the weight of \mathbf{c} then

$$
w(\mathbf{c})=\sum_{i=0}^{k-1} c_{i}
$$

- c is said to be balanced if

$$
w(\mathbf{c})=\frac{n(q-1)}{2}=\beta, \text { where } \beta \text { is an integer. }
$$

Balancing of q-ary sequences

- It has been proven [1], that \mathbf{x}, can always be balanced by adding modulo q one sequence from a set of balancing sequences $\mathbf{b}(s, p)=b_{1} b_{2} \ldots b_{k}$ generated as follows:

$$
b_{i}=\left\{\begin{array} { l l }
{ s , } & { i - 1 \geq p , } \\
{ s + 1 } & { (\operatorname { m o d } q) , } \\
{ i - 1 < p , }
\end{array} \text { where } \left\{\begin{array}{l}
0 \leq s \leq q-1 \\
0 \leq p \leq k-1
\end{array}\right.\right.
$$

- Let z be the iterator through these balancing sequences, with $z=s k+p, 0 \leq z \leq k q-1 . \mathbf{b}(s, p)$ and $\mathbf{b}(z)$ refers to the same.
- Let \mathbf{y} denote the sequence after a balancing sequence is added, $\mathbf{y}=\mathbf{x} \oplus_{q} \mathbf{b}(z)$. At least one $\mathbf{b}(z)$ will lead to a balanced output \mathbf{y}.
${ }^{1}$ T. G. Swart and J. H. Weber, "Efficient balancing of q-ary sequences with parallel decoding," in Proc. IEEE Int. Symp. Inform. Theory, Seoul, Korea, 2009.

Balancing of q-ary sequences (Cont'd)

Example (1)

For $q=3, k=3$, consider the sequence 202. The balancing value is $\beta=3$.

z	$\mathbf{b}(z)$	$\mathbf{x} \oplus_{\mathbf{q}} \mathbf{b}(z)=\mathbf{y}$	$w(\mathbf{y})$	Balanced?
0	000	$202 \oplus_{3} 000=202$	4	
1	100	$202 \oplus_{3} 100=002$	2	
2	110	$202 \oplus_{3} 110=012$	$\mathbf{3}$	\checkmark
3	111	$202 \oplus_{3} 111=010$	1	
4	211	$202 \oplus_{3} 211=110$	2	
5	221	$202 \oplus_{3} 221=120$	$\mathbf{3}$	\checkmark
6	222	$202 \oplus_{3} 222=121$	4	
7	022	$202 \oplus_{3} 022=221$	5	
8	002	$202 \oplus_{3} 002=201$	$\mathbf{3}$	\checkmark

q-ary Gray Codes

- Invented by Frank Gray [2]; originally used to solve problems in pulse code communication; and extended to several other fields.
- $\mathbf{d}=d_{1} d_{2} \ldots d_{r^{\prime}}$ denotes a sequence amongst the set of q-ary sequences of length r^{\prime} listed in lexicographic order. They are mapped to Gray code sequences, $\mathbf{g}=g_{1} g_{2} \ldots g_{r^{\prime}}$. Any two adjacent sequences differ in only one symbol position, with weight difference of either -1 or +1 .
- 4-ary Gray code of length 2

\boldsymbol{z}	\mathbf{d}	\mathbf{g}									
0	00	00	4	10	13	8	20	20	12	30	33
1	01	01	5	11	12	9	21	21	13	31	32
2	02	02	6	12	11	10	22	22	14	32	31
3	03	03	7	13	10	11	23	23	15	33	30

${ }^{2}$ F. Gray, "Pulse code communication," U. S. Patent 2632058, 1953.

Encoding and Decoding of q-ary Gray codes [3]

Gray code encoding algorithm The parity of the sum S_{i} of the first $i-1$ digits of \mathbf{g} determines the Gray code symbols, where $2 \leq i \leq r^{\prime}$ and $g_{1}=d_{1}$, then

$$
S_{i}=\sum_{j=1}^{i-1} g_{j}, \quad \text { and } \quad g_{i}= \begin{cases}d_{i}, & \text { if } S_{i} \text { is even } \\ q-1-d_{i}, & \text { if } S_{i} \text { is odd }\end{cases}
$$

Gray code decoding algorithm

$$
S_{i}=\sum_{j=1}^{i-1} g_{j}, \quad \text { and } \quad d_{i}= \begin{cases}g_{i}, & \text { if } S_{i} \text { is even } \\ q-1-g_{i}, & \text { if } S_{i} \text { is odd }\end{cases}
$$

${ }^{3}$ D.-J. Guan, "Generalized Gray codes with applications," in Proc. National Science Council, Republic of China, Part A, 1998.

Problem Statement

- The prefix plays an important role as it helps to decode the source information at the receiver end.
- Various previous schemes for balancing sequences were based on the assumption that a prefix can be sent [4]; without actually implementing the prefix.
- We propose an efficient, fast and easy algorithm to encode and decode balanced sequences with prefixes based on Gray codes.

[^0]
Encoding

Example (2)

For $q=3, k=3$, consider the sequence 201; the condition $k=q^{t}$ with $t \in N$ must hold. Length of Gray code $r^{\prime}=\log _{q} k+1=2$ so $n=5$. Graph goes through β.

Encoding (Cont'd)

Example (3)

For $q=3, k=3$, consider the sequence 220; Graph does not go through β. Therefore we need to refine the algorithm.

Encoding (Cont'd)

Example (Encoding)

For $q=3, k=3$, consider the sequence 212; Extra digit $u \in[0, q-1]$ and $u=\beta-w\left(\mathbf{c}^{\prime}\right)$.

Encoding (Cont'd)

Encoding algorithm: Balance the sequence by finding the correct Gray code prefix:
(1) Incrementing through z, determine the balancing sequence $\mathbf{b}(s, p)$ and add it to the information sequence \mathbf{x} to obtain \mathbf{y}.
(2) For each increment, convert z into base q over r^{\prime} symbols and determine the corresponding Gray code sequence, \mathbf{g}.
(3) Set $u=\beta-w\left(\mathbf{c}^{\prime}\right)$, provided that $u \in\{0,1, \ldots, q-1\}$, otherwise set $u=0$.
(9) Continue incrementing z until the weight of u, \mathbf{g} and \mathbf{y} together is equal to β.

Decoding

The figure below shows the decoding process.

Decoding

Example (Decoding)

Consider the case $q=3, n=13$, where a sequence was encoded as 1012000122022 , with a (3,3)-Gray code.

- The first symbol 1 is dropped, then the Gray code sequence is extracted as 012, and decoded as 010.
- Thus $z=3$, leading to $s=0$ and $p=3$, and $\mathbf{b}(0,3)=111000000$.
- Finally, the information sequence is recovered as $\mathbf{x}=\mathbf{y} \ominus_{q} \mathbf{b}(s, p)=000122022 \ominus_{3} 111000000=222122022$.

Redundancy

The information sequence length k as a function of r for different constructions.

- (1) $k \leq q^{r-1} \sqrt{\frac{6}{\pi r\left(q^{2}-1\right)}}[9]$
- (2) $k \leq \frac{q^{r}-1}{r-1}[10]$
- (3) $k \leq 2 \frac{q^{r}-1}{r-1}-r[10]$
- (4) $k=q^{r-1}-r$ [11]
- (5) $k=q^{r-2}$ (This is our construction.)

[^1]
Redundancy

Complexity

- Previous schemes discussed in [12] and [13] require $\mathcal{O}\left(q k \log _{q} k\right)$ digit operations for the encoding and decoding processes.
- The scheme in [14] requires $\mathcal{O}\left(q k \log _{q} k\right)$ digit operations for the encoding and $\mathcal{O}(k)$ digit operations for the decoding.
- Our decoding process requires $\mathcal{O}\left(k+\log _{q} k\right)$ digit operations. Fast parallel decoding, after $\mathbf{b}(s, p)$ has been determined from the Gray code.
- Encoding takes longer than decoding. In the worst case where the $k q$-th balancing sequence and Gray code result in balancing, $\mathcal{O}\left(q k \log _{q} k\right)$ digit operations are needed.

[^2]
Conclusion

- A simple algorithm was presented to encode and decode balanced q-ary information sequences of length k, where $k=q^{t}$. This is based on a Gray code prefix that encodes the balancing index.
- Both the balancing and Gray code algorithms are efficient as only simple addition and subtraction operations are used, and no lookup tables are needed.
- The majority of the decoding algorithm can also be performed in parallel.
- As future work, this algorithm will be extended to q-ary sequences of length k, where $k \neq q^{t}$.
- An investigation into whether the extra symbol u can be eliminated for certain values of k and q has to be explored.

Thanks for your attention!

"We cannot solve our problems with the same thinking we used when we created them." Albert Einstein

QUESTIONS AND COMMENTS

[^0]: ${ }^{4}$ T. G. Swart and J. H. Weber, "Efficient balancing of q-ary sequences with parallel decoding," in Proc. IEEE Int. Symp. Inform. Theory, Seoul, Korea, 2009.

[^1]: ${ }^{9}$ T. G. Swart and J. H. Weber, "Efficient balancing of q-ary sequences with parallel decoding," in Proc. IEEE Int. Symp. Inform. Theory, Seoul, Korea, 2009.
 ${ }^{10}$ R. M. Capocelli, L. Gargano and U. Vaccaro, "Efficient q-ary immutable codes," Discrete Applied Mathematics, 1991.
 ${ }^{11}$ L. G. Tallini and U. Vaccaro, "Efficient m-ary immutable codes," Discrete Applied Mathematics, 1999.

[^2]: ${ }^{12}$ R. M. Capocelli, L. Gargano and U. Vaccaro, "Efficient q-ary immutable codes," Discrete Applied Mathematics, vol. 33, 1991.
 ${ }^{13}$ L. G. Tallini and U. Vaccaro, "Efficient m-ary immutable codes," Discrete Applied Mathematics, 1999.
 ${ }^{14}$ T. G. Swart and J. H. Weber, "Efficient balancing of q-ary sequences with parallel decoding," in Proc. IEEE Int. Symp. Inform. Theory, Seoul, Korea, 2009.

